Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Front Hum Neurosci ; 18: 1359396, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38628972

RESUMEN

Background: The nucleus accumbens (NAc) is a key node of the brain reward circuit driving reward-related behavior. Dysregulation of NAc has been demonstrated to contribute to pathological markers of addiction in substance use disorder (SUD) making it a potential therapeutic target for brain stimulation. Transcranial focused ultrasound (tFUS) is an emerging non-invasive brain stimulation approach that can modulate deep brain regions with a high spatial resolution. However, there is currently no evidence showing how the brain activity of NAc and brain functional connectivity within the reward network neuromodulated by tFUS on the NAc. Methods: In this pilot study, we carried out a single-blind, sham-controlled clinical trial using functional magnetic resonance imaging (fMRI) to investigate the underlying mechanism of tFUS neuromodulating the reward network through NAc in ten healthy adults. Specifically, the experiment consists of a 20-min concurrent tFUS/fMRI scan and two 24-min resting-state fMRI before and after the tFUS session. Results: Firstly, our results demonstrated the feasibility and safety of 20-min tFUS on NAc. Additionally, our findings demonstrated that bilateral NAc was inhibited during tFUS on the left NAc compared to sham. Lastly, increased functional connectivity between the NAc and medial prefrontal cortex (mPFC) was observed after tFUS on the left NAc, but no changes for the sham group. Conclusion: Delivering tFUS to the NAc can modulate brain activations and functional connectivity within the reward network. These preliminary findings suggest that tFUS could be potentially a promising neuromodulation tool for the direct and non-invasive management of the NAc and shed new light on the treatment for SUD and other brain diseases that involve reward processing.

2.
Front Hum Neurosci ; 18: 1340374, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38487103

RESUMEN

Background: Balance and mobility impairments are prevalent post-stroke and a large number of survivors require walking assistance at 6 months post-stroke which diminishes their overall quality of life. Personalized interventions for gait and balance rehabilitation are crucial. Recent evidence indicates that stroke lesions in primary motor pathways, such as corticoreticular pathways (CRP) and corticospinal tract (CST), may lead to reliance on alternate motor pathways as compensation, but the current evidence lacks comprehensive knowledge about the underlying neural mechanisms. Methods: In this study, we investigate the functional connectivity (FC) changes within the motor network derived from an individualized cortical parcellation approach in 33 participants with chronic stroke compared to 17 healthy controls. The correlations between altered motor FC and gait deficits (i.e., walking speed and walking balance) were then estimated in the stroke population to understand the compensation mechanism of the motor network in motor function rehabilitation post-stroke. Results: Our results demonstrated significant FC increases between ipsilesional medial supplementary motor area (SMA) and premotor in stroke compared to healthy controls. Furthermore, we also revealed a negative correlation between ipsilesional SMA-premotor FC and self-selected walking speed, as well as the Functional Gait Assessment (FGA) scores. Conclusion: The increased FC between the ipsilesional SMA and premotor regions could be a compensatory mechanism within the motor network following a stroke when the individual can presumably no longer rely on the more precise CST modulation of movements to produce a healthy walking pattern. These findings enhance our understanding of individualized motor network FC changes and their connection to gait and walking balance impairments post-stroke, improving stroke rehabilitation interventions.

3.
Front Neurosci ; 18: 1334508, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38379757

RESUMEN

Objectives: The diverse nature of stroke necessitates individualized assessment, presenting challenges to case-control neuroimaging studies. The normative model, measuring deviations from a normal distribution, provides a solution. We aim to evaluate stroke-induced white matter microstructural abnormalities at group and individual levels and identify potential prognostic biomarkers. Methods: Forty-six basal ganglia stroke patients and 46 healthy controls were recruited. Diffusion-weighted imaging and clinical assessment were performed within 7 days after stroke. We used automated fiber quantification to characterize intergroup alterations of segmental diffusion properties along 20 fiber tracts. Then each patient was compared to normative reference (46 healthy participants) by Mahalanobis distance tractometry for 7 significant fiber tracts. Mahalanobis distance-based deviation loads (MaDDLs) and fused MaDDLmulti were extracted to quantify individual deviations. We also conducted correlation and logistic regression analyses to explore relationships between MaDDL metrics and functional outcomes. Results: Disrupted microstructural integrity was observed across the left corticospinal tract, bilateral inferior fronto-occipital fasciculus, left inferior longitudinal fasciculus, bilateral thalamic radiation, and right uncinate fasciculus. The correlation coefficients between MaDDL metrics and initial functional impairment ranged from 0.364 to 0.618 (p < 0.05), with the highest being MaDDLmulti. Furthermore, MaDDLmulti demonstrated a significant enhancement in predictive efficacy compared to MaDDL (integrated discrimination improvement [IDI] = 9.62%, p = 0.005) and FA (IDI = 34.04%, p < 0.001) of the left corticospinal tract. Conclusion: MaDDLmulti allows for assessing behavioral disorders and predicting prognosis, offering significant implications for personalized clinical decision-making and stroke recovery. Importantly, our method demonstrates prospects for widespread application in heterogeneous neurological diseases.

4.
Cereb Cortex ; 34(1)2024 01 14.
Artículo en Inglés | MEDLINE | ID: mdl-37991260

RESUMEN

The perceptual dysfunctions have been fundamental causes of cognitive and emotional problems in patients with major depressive disorder. However, visual system impairment in depression has been underexplored. Here, we explored functional connectivity in a large cohort of first-episode medication-naïve patients with major depressive disorder (n = 190) and compared it with age- and sex-matched healthy controls (n = 190). A recently developed individual-oriented approach was applied to parcellate the cerebral cortex into 92 regions of interest using resting-state functional magnetic resonance imaging data. Significant reductions in functional connectivities were observed between the right lateral occipitotemporal junction within the visual network and 2 regions of interest within the sensorimotor network in patients. The volume of right lateral occipitotemporal junction was also significantly reduced in major depressive disorder patients, indicating that this visual region is anatomically and functionally impaired. Behavioral correlation analysis showed that the reduced functional connectivities were significantly associated with inhibition control in visual-motor processing in patients. Taken together, our data suggest that functional connectivity between visual network and sensorimotor network already shows a significant reduction in the first episode of major depressive disorder, which may interfere with the inhibition control in visual-motor processing. The lateral occipitotemporal junction may be a hub of disconnection and may play a role in the pathophysiology of major depressive disorder.


Asunto(s)
Trastorno Depresivo Mayor , Humanos , Trastorno Depresivo Mayor/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Corteza Cerebral , Percepción Visual , Red Nerviosa
6.
PLoS One ; 18(10): e0292893, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37856535

RESUMEN

The pine wood nematode (PWN), one of the largest alien forestry pests in China, has caused numerous deaths of conifer forests in Europe and Asia, and is spreading to other suitable areas worldwide. Information on the spatial distribution of the PWN can provide important information for the management of this species. Here, the current and future geographical distributions of PWN were simulated in the Sichuan-Chongqing region of China in detail based on the MaxEnt model. The results indicated excellent prediction performance, with an area under curve score of more than 0.9. The key factors selected were the altitude, maximum temperature of the warmest month, annual precipitation, precipitation of the wettest quarter, and minimum temperature of the coldest month, with thresholds of < 400 m, > 37.5 °C, 1100-1250 mm, 460-530 mm and > 4.0 °C, respectively, indicating that the PWN can live in low-altitude, warm, and humid areas. The suitable region for the PWN is mainly concentrated in the metropolitan area, northeast of Chongqing, and the southeastern and eastern parts of Sichuan Province. Most importantly, in addition to their actual distribution area, the newly identified suitably distribution areas A, B, C, and D for the coming years and E, F, G, and H for the period-2041-2060 (2050s) should be strictly monitored for the presence of PWNs. Altogether, the suitable distribution ranges of the PWN in the Sichuan-Chongqing region show an increasing trend; therefore, owing to its inability to disperse by itself, human activities involving pine trees and vectors of the Japanese pine sawyer should be intensively controlled to prevent the PWN from spreading to these newly discovered suitable areas.


Asunto(s)
Nematodos , Pinus , Humanos , Animales , China , Temperatura , Frío
7.
Brain Stimul ; 16(4): 1144-1153, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37517466

RESUMEN

BACKGROUND: Implanted vagus nerve stimulation (VNS) and transcutaneous auricular VNS (taVNS) have been primarily administered clinically to the unilateral-left vagus nerve. This left-only convention has proved clinically beneficial in brain disorders. However, in stroke survivors, the presence of a lesion in the brain may complicate VNS-mediated signaling, and it is important to understand the laterality effects of VNS in stroke survivors to optimize the intervention. OBJECTIVE: To understand whether taVNS delivered to different ear targets relative to the lesion (ipsilesional vs contralesional vs bilateral vs sham) impacts blood oxygenation level dependent (BOLD) signal propagation in stroke survivors. METHODS: We enrolled 20 adults with a prior history of stroke. Each participant underwent a single visit, during which taVNS was delivered concurrently during functional magnetic resonance imaging (fMRI) acquisition. Each participant received three discrete active stimulation conditions (ipsilesional, contralesional, bilateral) and one sham condition in a randomized order. Stimulation-related BOLD signal changes in the active conditions were compared to sham conditions to understand the interaction taVNS and laterality effects. RESULTS: All active taVNS conditions deactivated the contralesional default mode network related regions compared to sham, however only ipsilesional taVNS enhanced the activations in the ipsilesional visuomotor and secondary visual cortex. Furthermore, we reveal an interaction in task activations between taVNS and cortical visuomotor areas, where ipsilesional taVNS significantly increased ipsilesional visuomotor activity and decreased contralesional visuomotor activity compared to sham. CONCLUSION: Laterality of taVNS relative to the lesion is a critical factor in optimizing taVNS in a stroke population, with ipsilesional stimulation providing largest direct brain activation and should be explored further when designing taVNS studies in neurorehabilitation.


Asunto(s)
Accidente Cerebrovascular , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Adulto , Humanos , Imagen por Resonancia Magnética/métodos , Encéfalo/fisiología , Accidente Cerebrovascular/diagnóstico por imagen , Accidente Cerebrovascular/terapia , Neuroimagen , Estimulación Eléctrica Transcutánea del Nervio/métodos , Estimulación del Nervio Vago/métodos , Nervio Vago/fisiología
8.
J Inorg Biochem ; 247: 112310, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37441921

RESUMEN

Three ruthenium arene complexes, namely {[(η6-p-cymene)Ru(Cl)]2(dpb)}(PF6)2 (1), [(η6-p-cymene)Ru(dpb)Cl](PF6) (2) and [(η6-p-cymene) Ru(dpb)py](PF6) (3) (dpb = 2,3-bis(2-pyridyl)benzo-quinoxaline, py = pyridine), were synthesized and their antitumor properties were introduced. Complexes 1-3 were characterized by 1H NMR, MS, and elemental analysis. As a binuclear ruthenium structure, the absorption of metal ligand electron transfer (MLCT) of 1 extended to 700 nm. Complex 1 was significantly hydrolyzed under dark conditions. The cytotoxicity in vitro study showed that complexes 1 and 2 are more toxic to human lung cancer cells (A549) and human cervial cancer cells (Hela) than cisplatin. Moreover, there was almost no cross-resistance between complex 1-2 and cisplatin. Under the irradiation at 478 nm, complexes 1-3 all produced singlet oxygen (1O2), and the 1O2 quantum yield of complex 1 in PBS is the highest among complexes 1-3. Complex 1 also produced 1O2 under 600 nm light irradiation. DNA gel electrophoresis showed that 1 caused the photocleavage of plasmid DNA. The hydrolysis rate of complex 1 was accelerated under light (λ > 600 nm). And the phototoxicity of complex 1 to Hela cells under light (λ > 600 nm) was much greater than its dark toxicity, which may be due to its generation of 1O2 and the promotion of its hydrolysis under long-wave light irradiation.


Asunto(s)
Antineoplásicos , Complejos de Coordinación , Rutenio , Humanos , Cisplatino , Células HeLa , Línea Celular Tumoral , Rutenio/farmacología , Rutenio/química , ADN/química , Complejos de Coordinación/farmacología , Complejos de Coordinación/química , Antineoplásicos/farmacología , Antineoplásicos/química
9.
Neurorehabil Neural Repair ; 37(6): 374-383, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37209010

RESUMEN

BACKGROUND: Implanted vagus nerve stimulation (VNS), when synchronized with post-stroke motor rehabilitation improves conventional motor rehabilitation training. A non-invasive VNS method known as transcutaneous auricular vagus nerves stimulation (taVNS) has emerged, which may mimic the effects of implanted VNS. OBJECTIVE: To determine whether taVNS paired with motor rehabilitation improves post-stroke motor function, and whether synchronization with movement and amount of stimulation is critical to outcomes. METHODS: We developed a closed-loop taVNS system for motor rehabilitation called motor activated auricular vagus nerve stimulation (MAAVNS) and conducted a randomized, double-blind, pilot trial investigating the use of MAAVNS to improve upper limb function in 20 stroke survivors. Participants attended 12 rehabilitation sessions over 4-weeks, and were assigned to a group that received either MAAVNS or active unpaired taVNS concurrently with task-specific training. Motor assessments were conducted at baseline, and weekly during rehabilitation training. Stimulation pulses were counted for both groups. RESULTS: A total of 16 individuals completed the trial, and both MAAVNS (n = 9) and unpaired taVNS (n = 7) demonstrated improved Fugl-Meyer Assessment upper extremity scores (Mean ± SEM, MAAVNS: 5.00 ± 1.02, unpaired taVNS: 3.14 ± 0.63). MAAVNS demonstrated greater effect size (Cohen's d = 0.63) compared to unpaired taVNS (Cohen's d = 0.30). Furthermore, MAAVNS participants received significantly fewer stimulation pulses (Mean ± SEM, MAAVNS: 36 070 ± 3205) than the fixed 45 000 pulses unpaired taVNS participants received (P < .05). CONCLUSION: This trial suggests stimulation timing likely matters, and that pairing taVNS with movements may be superior to an unpaired approach. Additionally, MAAVNS effect size is comparable to that of the implanted VNS approach.


Asunto(s)
Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Estimulación Eléctrica Transcutánea del Nervio , Estimulación del Nervio Vago , Humanos , Proyectos Piloto , Estimulación del Nervio Vago/métodos , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/complicaciones , Movimiento , Estimulación Eléctrica Transcutánea del Nervio/métodos
10.
Sci Adv ; 9(3): eabq8566, 2023 Jan 18.
Artículo en Inglés | MEDLINE | ID: mdl-36652524

RESUMEN

A confluence of evidence indicates that brain functional connectivity is not static but rather dynamic. Capturing transient network interactions in the individual brain requires a technology that offers sufficient within-subject reliability. Here, we introduce an individualized network-based dynamic analysis technique and demonstrate that it is reliable in detecting subject-specific brain states during both resting state and a cognitively challenging language task. We evaluate the extent to which brain states show hemispheric asymmetries and how various phenotypic factors such as handedness and gender might influence network dynamics, discovering a right-lateralized brain state that occurred more frequently in men than in women and more frequently in right-handed versus left-handed individuals. Longitudinal brain state changes were also shown in 42 patients with subcortical stroke over 6 months. Our approach could quantify subject-specific dynamic brain states and has potential for use in both basic and clinical neuroscience research.

11.
Theranostics ; 12(12): 5564-5573, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35910809

RESUMEN

Rationale: Although non-contrast computed tomography (NCCT) is the recommended examination for the suspected acute ischemic stroke (AIS), it cannot detect significant changes in the early infarction. We aimed to develop a deep-learning model to identify early invisible AIS in NCCT and evaluate its diagnostic performance and capacity for assisting radiologists in decision making. Methods: In this multi-center, multi-manufacturer retrospective study, 1136 patients with suspected AIS but invisible lesions in NCCT were collected from two geographically distant institutions between May 2012 to May 2021. The AIS lesions were confirmed based on the follow-up diffusion-weighted imaging and clinical diagnosis. The deep-learning model was comprised of two deep convolutional neural networks to locate and classify. The performance of the model and radiologists was evaluated by the area under the receiver operator characteristic curve (AUC), sensitivity, specificity, and accuracy values with 95% confidence intervals. Delong's test was used to compare the AUC values, and a chi-squared test was used to evaluate the rate differences. Results: 986 patients (728 AIS, median age, 55 years, interquartile range [IQR]: 47-65 years; 664 males) were assigned to the training and internal validation cohorts. 150 patients (74 AIS, median age, 63 years, IQR: 53-75 years; 100 males) were included as an external validation cohort. The AUCs of the model were 83.61% (sensitivity, 68.99%; specificity, 98.22%; and accuracy, 89.87%) and 76.32% (sensitivity, 62.99%; specificity, 89.65%; and accuracy, 88.61%) for the internal and external validation cohorts based on the slices. The AUC of the model was much higher than that of two experienced radiologists (65.52% and 59.48% in the internal validation cohort; 64.01% and 64.39% in external validation cohort; all P < 0.001). The accuracy of two radiologists increased from 62.00% and 58.67% to 92.00% and 84.67% when assisted by the model for patients in the external validation cohort. Conclusions: This deep-learning model represents a breakthrough in solving the challenge that early invisible AIS lesions cannot be detected by NCCT. The model we developed in this study can screen early AIS and save more time. The radiologists assisted with the model can provide more effective guidance in making patients' treatment plan in clinic.


Asunto(s)
Aprendizaje Profundo , Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Anciano , Área Bajo la Curva , Humanos , Accidente Cerebrovascular Isquémico/diagnóstico por imagen , Masculino , Persona de Mediana Edad , Estudios Retrospectivos , Accidente Cerebrovascular/diagnóstico por imagen , Tomografía Computarizada por Rayos X/métodos
12.
Elife ; 112022 05 05.
Artículo en Inglés | MEDLINE | ID: mdl-35510840

RESUMEN

Three large-scale networks are considered essential to cognitive flexibility: the ventral and dorsal attention (VANet and DANet) and salience (SNet) networks. The ventrolateral prefrontal cortex (vlPFC) is a known component of the VANet and DANet, but there is a gap in the current knowledge regarding its involvement in the SNet. Herein, we used a translational and multimodal approach to demonstrate the existence of a SNet node within the vlPFC. First, we used tract-tracing methods in non-human primates (NHP) to quantify the anatomical connectivity strength between different vlPFC areas and the frontal and insular cortices. The strongest connections were with the dorsal anterior cingulate cortex (dACC) and anterior insula (AI) - the main cortical SNet nodes. These inputs converged in the caudal area 47/12, an area that has strong projections to subcortical structures associated with the SNet. Second, we used resting-state functional MRI (rsfMRI) in NHP data to validate this SNet node. Third, we used rsfMRI in the human to identify a homologous caudal 47/12 region that also showed strong connections with the SNet cortical nodes. Taken together, these data confirm a SNet node in the vlPFC, demonstrating that the vlPFC contains nodes for all three cognitive networks: VANet, DANet, and SNet. Thus, the vlPFC is in a position to switch between these three networks, pointing to its key role as an attentional hub. Its additional connections to the orbitofrontal, dorsolateral, and premotor cortices, place the vlPFC at the center for switching behaviors based on environmental stimuli, computing value, and cognitive control.


Asunto(s)
Corteza Motora , Sustancia Blanca , Animales , Mapeo Encefálico , Giro del Cíngulo , Imagen por Resonancia Magnética , Vías Nerviosas , Corteza Prefrontal/diagnóstico por imagen
13.
JCI Insight ; 7(4)2022 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-35191397

RESUMEN

BACKGROUNDAfter the initial surge in COVID-19 cases, large numbers of patients were discharged from a hospital without assessment of recovery. Now, an increasing number of patients report postacute neurological sequelae, known as "long COVID" - even those without specific neurological manifestations in the acute phase.METHODSDynamic brain changes are crucial for a better understanding and early prevention of "long COVID." Here, we explored the cross-sectional and longitudinal consequences of COVID-19 on the brain in 34 discharged patients without neurological manifestations. Gray matter morphology, cerebral blood flow (CBF), and volumes of white matter tracts were investigated using advanced magnetic resonance imaging techniques to explore dynamic brain changes from 3 to 10 months after discharge.RESULTSOverall, the differences of cortical thickness were dynamic and finally returned to the baseline. For cortical CBF, hypoperfusion in severe cases observed at 3 months tended to recover at 10 months. Subcortical nuclei and white matter differences between groups and within subjects showed various trends, including recoverable and long-term unrecovered differences. After a 10-month recovery period, a reduced volume of nuclei in severe cases was still more extensive and profound than that in mild cases.CONCLUSIONOur study provides objective neuroimaging evidence for the coexistence of recoverable and long-term unrecovered changes in 10-month effects of COVID-19 on the brain. The remaining potential abnormalities still deserve public attention, which is critically important for a better understanding of "long COVID" and early clinical guidance toward complete recovery.FUNDINGNational Natural Science Foundation of China.


Asunto(s)
Encéfalo/patología , COVID-19/patología , COVID-19/complicaciones , COVID-19/virología , Femenino , Humanos , Masculino , SARS-CoV-2/aislamiento & purificación , Síndrome Post Agudo de COVID-19
14.
Infect Dis Model ; 6: 643-663, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33869909

RESUMEN

Nonpharmaceutical interventions (NPIs), particularly contact tracing isolation and household quarantine, play a vital role in effectively bringing the Coronavirus Disease 2019 (COVID-19) under control in China. The pairwise model, has an inherent advantage in characterizing those two NPIs than the classical well-mixed models. Therefore, in this paper, we devised a pairwise epidemic model with NPIs to analyze COVID-19 outbreak in China by using confirmed cases during February 3rd-22nd, 2020. By explicitly incorporating contact tracing isolation and family clusters caused by household quarantine, our model provided a good fit to the trajectory of COVID-19 infections. We calculated the reproduction number R = 1.345 (95% CI: 1.230 - 1.460) for Hubei province and R = 1.217 (95% CI: 1.207 - 1.227) for China (except Hubei). We also estimated the peak time of infections, the epidemic duration and the final size, which are basically consistent with real observation. We indicated by simulation that the traced high-risk contacts from incubated to susceptible decrease under NPIs, regardless of infected cases. The sensitivity analysis showed that reducing the exposure of the susceptible and increasing the clustering coefficient bolster COVID-19 control. With the enforcement of household quarantine, the reproduction number R and the epidemic prevalence declined effectively. Furthermore, we obtained the resumption time of work and production in China (except Hubei) on 10th March and in Hubei at the end of April 2020, respectively, which is broadly in line with the actual time. Our results may provide some potential lessons from China on the control of COVID-19 for other parts of the world.

15.
Mol Psychiatry ; 26(6): 2493-2503, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33462330

RESUMEN

Contemporary models of psychosis suggest that a continuum of severity of psychotic symptoms exists, with subthreshold psychotic experiences (PEs) potentially reflecting some genetic and environmental risk factors shared with clinical psychosis. Thus, identifying abnormalities in brain activity that manifest across this continuum can shed new light on the pathophysiology of psychosis. Here, we investigated the moment-to-moment engagement of brain networks ("states") in individuals with schizophrenia (SCZ) and PEs and identified features of these states that are associated with psychosis-spectrum symptoms. Transient brain states were defined by clustering "single snapshots" of blood oxygen level-dependent images, based on spatial similarity of the images. We found that individuals with SCZ (n = 35) demonstrated reduced recruitment of three brain states compared to demographically matched healthy controls (n = 35). Of these three illness-related states, one specific state, involving primarily the visual and salience networks, also occurred at a lower rate in individuals with persistent PEs (n = 22), compared to demographically matched healthy youth (n = 22). Moreover, the occurrence rate of this marker brain state was negatively correlated with the severity of PEs (r = -0.26, p = 0.003, n = 130). In contrast, the spatial map of this state appeared to be unaffected in the SCZ or PE groups. Thus, reduced engagement of a brain state involving the visual and salience networks was demonstrated across the psychosis continuum, suggesting that early disruptions of perceptual and affective function may underlie some of the core symptoms of the illness.


Asunto(s)
Trastornos Psicóticos , Esquizofrenia , Adolescente , Encéfalo , Humanos , Imagen por Resonancia Magnética
16.
Cereb Cortex ; 31(6): 2898-2912, 2021 05 10.
Artículo en Inglés | MEDLINE | ID: mdl-33497437

RESUMEN

The cerebellum, a structure historically associated with motor control, has more recently been implicated in several higher-order auditory-cognitive functions. However, the exact functional pathways that mediate cerebellar influences on auditory cortex (AC) remain unclear. Here, we sought to identify auditory cortico-cerebellar pathways based on intrinsic functional connectivity magnetic resonance imaging. In contrast to previous connectivity studies that principally consider the AC as a single functionally homogenous unit, we mapped the cerebellar connectivity across different parts of the AC. Our results reveal that auditory subareas demonstrating different levels of interindividual functional variability are functionally coupled with distinct cerebellar regions. Moreover, auditory and sensorimotor areas show divergent cortico-cerebellar connectivity patterns, although sensorimotor areas proximal to the AC are often functionally grouped with the AC in previous connectivity-based network analyses. Lastly, we found that the AC can be functionally segmented into highly similar subareas based on either cortico-cerebellar or cortico-cortical functional connectivity, suggesting the existence of multiple parallel auditory cortico-cerebellar circuits that involve different subareas of the AC. Overall, the present study revealed multiple auditory cortico-cerebellar pathways and provided a fine-grained map of AC subareas, indicative of the critical role of the cerebellum in auditory processing and multisensory integration.


Asunto(s)
Corteza Auditiva/diagnóstico por imagen , Vías Auditivas/diagnóstico por imagen , Mapeo Encefálico/métodos , Cerebelo/diagnóstico por imagen , Imagen por Resonancia Magnética/métodos , Red Nerviosa/diagnóstico por imagen , Adulto , Corteza Auditiva/fisiología , Vías Auditivas/fisiología , Cerebelo/fisiología , Bases de Datos Factuales , Femenino , Humanos , Masculino , Red Nerviosa/fisiología , Adulto Joven
17.
Psychol Med ; 51(10): 1687-1695, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-32151293

RESUMEN

BACKGROUND: Major depressive disorder (MDD) is a prevalent mental disorder characterized by impairments in affect, behaviour and cognition. Previous studies have indicated that the anterior cingulate cortex (ACC) may play an essential role in the pathophysiology of depression. In this study, we systematically identified changes in functional connectivity (FC) for ACC subdivisions that manifest in MDD and further investigated the relationship between these changes and the clinical symptoms of depression. METHODS: Sub-regional ACC FC was estimated in 41 first-episode medication-naïve MDD patients compared to 43 healthy controls. The relationships between depressive symptom severity and aberrant FC of ACC subdivisions were investigated. In addition, we conducted a meta-analysis to generate the distributions of MDD-related abnormal regions from previously reported results and compared them to FC deficits revealed in this study. RESULTS: In MDD patients, the subgenual and perigenual ACC demonstrated decreased FC with the posterior regions of the default network (DN), including the posterior inferior parietal lobule and posterior cingulate cortex. FC of these regions was negatively associated with the Automatic Thoughts Questionnaire scores and largely overlapped with previously reported abnormal regions. In addition, reduced FC between the caudal ACC and precuneus was negatively correlated with the Hamilton Anxiety Scale scores. We also found increased FC between the rostral ACC and dorsal medial prefrontal cortex. CONCLUSIONS: Our findings confirmed that functional interaction changes in different ACC sub-regions are specific and associated with distinct symptoms of depression. Our findings provide new insights into the role of ACC sub-regions and DN in the pathophysiology of MDD.


Asunto(s)
Red en Modo Predeterminado , Trastorno Depresivo Mayor/fisiopatología , Giro del Cíngulo/fisiopatología , Adulto , Escalas de Valoración Psiquiátrica Breve , Corteza Cerebral/fisiopatología , Cognición/fisiología , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Lóbulo Parietal/fisiopatología , Encuestas y Cuestionarios
18.
Nat Commun ; 11(1): 5046, 2020 10 07.
Artículo en Inglés | MEDLINE | ID: mdl-33028816

RESUMEN

Signal loss in blood oxygen level-dependent (BOLD) functional neuroimaging is common and can lead to misinterpretation of findings. Here, we reconstructed compromised fMRI signal using deep machine learning. We trained a model to learn principles governing BOLD activity in one dataset and reconstruct artificially compromised regions in an independent dataset, frame by frame. Intriguingly, BOLD time series extracted from reconstructed frames are correlated with the original time series, even though the frames do not independently carry any temporal information. Moreover, reconstructed functional connectivity maps exhibit good correspondence with the original connectivity maps, indicating that the model recovers functional relationships among brain regions. We replicated this result in two healthy datasets and in patients whose scans suffered signal loss due to intracortical electrodes. Critically, the reconstructions capture individual-specific information. Deep machine learning thus presents a unique opportunity to reconstruct compromised BOLD signal while capturing features of an individual's own functional brain organization.


Asunto(s)
Mapeo Encefálico/métodos , Corteza Cerebral/diagnóstico por imagen , Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Imagen por Resonancia Magnética/métodos , Adolescente , Adulto , Corteza Cerebral/irrigación sanguínea , Corteza Cerebral/fisiología , Conjuntos de Datos como Asunto , Estimulación Encefálica Profunda , Femenino , Voluntarios Sanos , Humanos , Masculino , Modelos Neurológicos , Oxígeno/sangre , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/fisiopatología , Enfermedad de Parkinson/terapia , Adulto Joven
19.
Neurology ; 95(9): e1174-e1187, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32586896

RESUMEN

OBJECTIVE: To elucidate the timeframe and spatial patterns of cortical reorganization after different stroke-induced basal ganglia lesions, we measured cortical thickness at 5 time points over a 6-month period. We hypothesized that cortical reorganization would occur very early and that, along with motor recovery, it would vary based on the stroke lesion site. METHODS: Thirty-three patients with unilateral basal ganglia stroke and 23 healthy control participants underwent MRI scanning and behavioral testing. To further decrease heterogeneity, we split patients into 2 groups according to whether or not the lesions mainly affect the striatal motor network as defined by resting-state functional connectivity. A priori measures included cortical thickness and motor outcome, as assessed with the Fugl-Meyer scale. RESULTS: Within 14 days poststroke, cortical thickness already increased in widespread brain areas (p = 0.001), mostly in the frontal and temporal cortices rather than in the motor cortex. Critically, the 2 groups differed in the severity of motor symptoms (p = 0.03) as well as in the cerebral reorganization they exhibited over a period of 6 months (Dice overlap index = 0.16). Specifically, the frontal and temporal regions demonstrating cortical thickening showed minimal overlap between these 2 groups, indicating different patterns of reorganization. CONCLUSIONS: Our findings underline the importance of assessing patients early and of considering individual differences, as patterns of cortical reorganization differ substantially depending on the precise location of damage and occur very soon after stroke. A better understanding of the macrostructural brain changes following stroke and their relationship with recovery may inform individualized treatment strategies.


Asunto(s)
Enfermedad Cerebrovascular de los Ganglios Basales/fisiopatología , Infarto Encefálico/fisiopatología , Corteza Cerebral/diagnóstico por imagen , Plasticidad Neuronal , Paresia/fisiopatología , Recuperación de la Función , Adulto , Enfermedad Cerebrovascular de los Ganglios Basales/diagnóstico por imagen , Infarto Encefálico/diagnóstico por imagen , Estudios de Casos y Controles , Corteza Cerebral/patología , Femenino , Neuroimagen Funcional , Humanos , Estudios Longitudinales , Imagen por Resonancia Magnética , Masculino , Persona de Mediana Edad , Neostriado/diagnóstico por imagen , Neostriado/fisiopatología , Vías Nerviosas , Tamaño de los Órganos , Índice de Severidad de la Enfermedad , Rehabilitación de Accidente Cerebrovascular
20.
Phys Rev E ; 102(6-1): 062422, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33466063

RESUMEN

Transient or sustained permeability transition pore (PTP) opening is important in normal physiology or cell death, respectively. These are closely linked to Ca^{2+} and reactive oxygen species (ROS). The entry of Ca^{2+} into mitochondria regulates ROS production, and both Ca^{2+} and ROS trigger PTP opening. In addition to this feedforward loop, there exist four feedback loops in the Ca^{2+}-ROS-PTP system. ROS promotes Ca^{2+} entering (F1) and induces further ROS generation (F2), forming two positive feedback loops. PTP opening results in the efflux of Ca^{2+} (F3) and ROS (F4) from the mitochondria, forming two negative feedback loops. Owing to these complexities, we construct a mathematical model to dissect the roles of these feedback loops in the dynamics of PTP opening. The qualitative agreement between simulation results and recent experimental observations supports our hypothesis that under physiological conditions the PTP opens in an oscillatory state, while under pathological conditions it opens in a high steady state. We clarify that the negative feedback loops are responsible for producing oscillations, wherein F3 plays a more prominent role than F4; whereas the positive feedback loops are beneficial for maintaining oscillation robustness, wherein F1 has a more dominant role than F2. Furthermore, we manifest that the proper increase in negative feedback strength or decrease in positive feedback strength not only facilitates the occurrence of oscillations and thus protects the system against a high steady state, but also assists in lowering the oscillation peak. This study may provide potential therapeutic strategies in treating neurodegenerative diseases due to PTP dysfunction.


Asunto(s)
Calcio/metabolismo , Retroalimentación Fisiológica , Poro de Transición de la Permeabilidad Mitocondrial/metabolismo , Modelos Biológicos , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...